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ABSTRACT
Search strategies are crucial to efficiently solve constraint satis-

faction problems. However, programming search strategies in the

existing constraint solvers is a daunting task and constraint-based

languages usually have compositionality issues. We propose space-

time programming, a paradigm extending the synchronous lan-

guage Esterel and timed concurrent constraint programming with

backtracking, for creating and composing search strategies. In this

formalism, the search strategies are composed in the same way as

we compose concurrent processes. Our contributions include the

design and behavioral semantics of spacetime programming, and

the proofs that spacetime programs are deterministic, reactive and

extensive functions. Moreover, spacetime programming provides

a bridge between the theoretical foundations of constraint-based

concurrency and the practical aspects of constraint solving. We de-

veloped a prototype of the compiler that produces search strategies

with a small overhead compared to the hard-coded ones.

KEYWORDS
synchronous programming, concurrent constraint programming,

constraint satisfaction problem, search strategy

1 INTRODUCTION
Constraint programming is a powerful paradigm to model problems

in terms of constraints over variables. This declarative paradigm

solves many practical problems including scheduling, vehicle rout-

ing or biology problems [33], as well as more unusual problems such

as in musical composition [55]. Constraint programming describes

what the problem is, whereas procedural approaches describe how
a problem is solved. The programmer declares the constraints of

its problem, and relies on a generic constraint solver to obtain a

solution.

A constraint satisfaction problem (CSP) is a couple ⟨d,C⟩whered
is a function mapping variables to sets of values (the domain) andC
is a set of constraints on these variables. The goal is to find a solution:

a set of singleton domains such that every constraint is satisfied.

For example, given the CSP ⟨{x 7→ {1, 2, 3},y 7→ {1, 2, 3}}, {x >
y, x , 2}⟩, a solution is {x 7→ 3,y 7→ 1}.
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The solving procedure usually interleaves two steps: propagation

and search. Propagation removes values from the domains that do

not satisfy at least one constraint. The search step makes a choice

when propagation cannot infer more information and backtracks

to another choice if the former one did not lead to a solution. The

successive interleaving of choices and backtracks lead to the con-

struction of a search tree that can be explored with various search

strategies. In this paper, the term “search strategy” takes the broad

sense of any procedure that describes how a CSP is solved.

In order to attain reasonable efficiency, the programmer must

often customize the search strategy per problem [3, 47, 54]. However,

to program a search strategy in a constraint solver is a daunting

task that requires expertise and good understanding on the solver’s

intrinsics. This is why various language abstractions emerged to

ease the development of search strategies [21, 26, 57, 60].

One of the remaining problems of search languages is the com-

positionality of search strategies: how can we easily combine two

strategies and form a third one? Compositionality is important to

build a collection of search strategies reusable across problems. To

cope with this compositionality issue, we witness a growing num-

ber of proposals based on functional programming [41], constraint

logic programming [40], and search combinators [42]. However, a

recurring issue in these approaches is the difficulty to share infor-

mation among strategies; we discuss this drawback and others in

Section 8.

We propose spacetime programming (or “spacetime” for short) to

tackle this compositionality issue. Spacetime is a language based on

the imperative synchronous language Esterel [5] and timed concur-

rent constraint programming (TCC) [34, 35]. Spacetime extends the

synchronous model of computation of Esterel with backtracking,

and refines the interprocess communication mechanism of TCC

with lattice-based variables. We introduce these features in the

following two paragraphs.

Synchronous Programming with Backtracking. The synchronous
paradigm [15] proposes a notion of logical time dividing the execu-

tion of a program into a sequence of discrete instants. A synchro-

nous program is composed of processes that wait for one another

before the end of each instant. Operationally, we can view a syn-

chronous program as a coroutine: a function that can be called

multiple times and that maintains its state between two successive

calls. One call to this coroutine represents one instant that elapsed.

The main goal of logical time is to coordinate concurrent processes

while avoiding typical issues of parallelism, such as deadlock or

indeterminism [22].

Spacetime inherits most of the temporal statements of TCC, and

more specifically those of the synchronous language Esterel [5],
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including the delay, sequence, parallel, loop and conditional state-

ments. The novelty of spacetime is to connect the search tree gener-

ated by a CSP and linear logical time of synchronous programming.

Our proposal is captured in the following principle:

A node of the search tree is explored in exactly one logical instant.

A corollary to this first principle is:

A search strategy is a synchronous process.

These two principles are illustrated in Sections 4 and 6 with well-

known search strategies.

Deterministic Interprocess Communication. The second charac-

teristic of spacetime is inherited from concurrent constraint pro-

gramming (CCP) [38]. CCP defines a shared memory as a global

constraint store accumulating partial information. The CCP pro-

cesses communicate and synchronize through this constraint store

with two primitives: tell(c) for adding a constraint c into the store,

and ask(c) for asking if c can be deduced from the store. Concur-

rency is treated by requiring the store to grow monotonically and

extensively, which implies that removal of information is not per-

mitted. An important result is that any CCP program is a closure

operator over its constraint store (a function that is idempotent,

extensive and monotone).

TCC embeds CCP in the synchronous paradigm [34, 35] such

that an instant is guaranteed to be a closure operator over its store;

however information can be lost between two instants. There are

two main differences between spacetime and TCC.

Firstly, instead of a central and shared constraint store, variables

in spacetime are defined over lattice structures. The tell and ask

operations are thus defined on lattices, where tell relies on the

least upper bound operation and ask on the order of the lattice. In

Section 3, we formalize a CSP as a lattice that we later manipulate

as a variable in spacetime programs.

Secondly, unlike TCC programs, spacetime programs are not

closure operators by construction. This stems from the negative

ask statement (testing the absence of information) which is not

monotone, and the presence of external functions which are not

necessarily idempotent and monotone. As in Esterel, we focus in-
stead on proving that the computation is deterministic and reactive.

In addition, we also prove that spacetime programs are extensive

functions within and across instants (Section 5.6).

Contributions. In summary, this paper includes the following

contributions:

• We provide a language tackling the compositionality issue

of search strategies. We illustrate this claim in Sections 4

and 6 by reconstructing and combining well-known search

strategies.

• We extend the behavioral semantics of Esterel to backtrack-

ing and variables defined over lattices with proofs of deter-

minism, reactivity and extensiveness (Section 5).

• We implement a prototype of the compiler
1
, and integrate

spacetime into the Java language (Section 7). The evaluation

of the search strategies presented in this paper shows a small

overhead compared to the hard-coded ones of Choco [31].

1
Open source compiler available at https://github.com/ptal/bonsai/tree/PPDP19.

• Spacetime is the first language that unifies constraint-based

concurrency, synchronous programming and backtracking.

This unification bridges a gap between the theoretical foun-

dations of CCP and the practical aspects of constraint solv-

ing.

2 DEFINITIONS
To keep this paper self-contained, we expose necessary definitions

on lattice theory which are then used to define constraint program-

ming. Given an ordered set ⟨L, ≤⟩ and S ⊆ L, x ∈ L is a lower bound
of S if ∀y ∈ S, x ≤ y. We denote the set of all the lower bounds

of S by Sℓ . The element x ∈ L is the greatest lower bound of S if

∀y ∈ Sℓ, x ≥ y. The least upper bound is defined dually by reversing
the order.

Definition 2.1 (Lattice). An ordered set ⟨L, ≤⟩ is a lattice if every
pair of elements x,y ∈ L has both a least upper bound and a greatest
lower bound. We write x ⊔ y (called join) the least upper bound of

the set {x,y} and x ⊓ y (called meet) its greatest lower bound. A

bounded lattice has a top element ⊤ ∈ L such that ∀x ∈ L, x ≤ ⊤
and a bottom element ⊥ ∈ L such that ∀x ∈ L,⊥ ≤ x .

As a matter of convenience and when no ambiguity arises, we sim-

ply write L instead of ⟨L, ≤⟩ when referring to ordered structures.

Also, we refer to the ordering of the lattice L as ≤L and similarly

for any operation defined on L.
An example is the lattice LMax of increasing integers ⟨N , ≥ ,max⟩

where N ⊂ N, ≥ is the natural order on N and max is the join op-

erator. Dually, we also have LMin with the order ≤ and join min.
The Cartesian product P×Q is defined by the lattice ⟨{(x,y) | x ∈

P,y ∈ Q}, ≤×⟩ such that (x1,y1) ≤× (x2,y2) if x1 ≤P x2∧y1 ≤Q y2.
Given the lattice L1 × L2, it is useful to define the following projec-

tion functions, for i ∈ {1, 2} and xi ∈ Li we have πi ((x1, x2)) 7→ xi .
For the sake of readability, we also extend the projection over any

subset S ⊆ L1 × L2 as π
′
i (S) = {πi (x) | x ∈ S}.

Given a lattice ⟨L, ≤⟩, a function f : L → L is extensive if

for all x ∈ L, we have x ≤ f (x). This property is important in

language semantics because it guarantees that a program does not

lose information. More background on lattice theory can be found

in [7, 11].

3 LATTICE VIEW OF CONSTRAINT
PROGRAMMING

As we will see shortly, a spacetime program is a function exploring

a state space defined over a lattice structure. To illustrate this para-

digm, we choose in this paper to focus on the state space generated

by constraint satisfaction problems (CSPs). Hence, we describe the

lattice of CSPs and the lattice of its state space, called a search tree.

3.1 Lattice of CSPs
Following various works [1, 13, 28, 46], we introduce constraint

programming through the prism of lattice theory. The main obser-

vation is that the hierarchical structure of constraint programming

can be defined by a series of lifts. We incrementally construct the

lattice of CSPs.

First of all, we define the domain of a variable as an element of

a lattice structure. In the case of finite domains, an example is the

https://github.com/ptal/bonsai/tree/PPDP19


Spacetime Programming PPDP ’19, October 7–9, 2019, Porto, Portugal

powerset lattice ⟨P(N ), ⊇⟩ with the finite set N ⊂ N and ordered

by superset inclusion. For instance, a variable x in {0, 1, 2} ∈ P(N )
is less informative than a singleton domain {0}, i.e. {0, 1, 2} ≤ {0}.

Other lattices can be used (see e.g. [13]), so we abstract the lattice

of variable’s domains as ⟨D, ≤⟩.
Let Loc be an unordered set of variable’s names. We lift the

lattice of domains D to the lattice of partial functions Loc ⇀ D. In
operational terms, a partial function represents a store of variables.

Definition 3.1 (Store of variables). We write the set of all partial

functions from Loc to D as [Loc ⇀ D]. Let σ , τ ∈ [Loc ⇀ D]. We

write π ′
1
(σ ) the subset of Loc on which σ is defined. The set of

variables stores is a lattice defined as:

SV = ⟨[Loc ⇀ D], τ ≤ σ if ∀ℓ ∈ π ′
1
(τ ), τ (ℓ) ≤D σ (ℓ)⟩

We find convenient to turn a partial function σ into a set, called

its graph, defined by {(x,σ (x)) | x ∈ π ′
1
(σ )}. Given a lattice L, the

lattice Store(Loc, L) is the set of the graphs of all partial functions
from Loc to L. In comparison to SV , we parametrize the lattice

Store(Loc, L) by its set of locations Loc and underlying lattice L, so
we can reuse it later. Notice that Store(Loc,D) is isomorphic to SV .

We turn a logical constraint c ∈ C into an extensive function

p : SV → SV , called propagator, over the store of variables. For
example, given the store d = {x 7→ {1, 2},y 7→ {2, 3}} and the

constraint x ≥ y, a propagator p≥ associated to ≥ gives p≥(d) =
{x 7→ {2},y 7→ {2, 3}}. We notice that this propagation step is

extensive, e.g. d ≤ p≥(d). Beyond extensiveness, a propagator must

also be sound, i.e. it does not remove solutions of the induced

constraint, to guarantee the correctness of the solving algorithm.

We now define the lattice of all propagators SC = ⟨P(Prop), ⊆ ⟩
where Prop is the set of all propagators (extensive and sound func-

tions). The order is given by set inclusion: additional propagators

bring more information to the CSP. We call an element of this lat-

tice a constraint store. The lattice of all CSPs—with propagators

instead of logical constraints—is given by the Cartesian product

CSP = SV × SC .
Given a CSP ⟨d, {p1, . . . ,pn }⟩ ∈ CSP , the propagation step is real-

ized by computing the fixpoint ofp1(p2(..pn (d))).We notepropaдate :

CSP → CSP the function computing this fixpoint. In practice, this

function is one crucial ingredient to obtain good performance, and

this is part of the theory of constraint propagation (e.g. see [1, 44,

51]). In the rest of this paper, we keep this propagation step abstract,

and we delegate it to specialized solvers when needed.

Once propagation is at a fixpoint, and if the domain d is not a

solution yet, a search step must be performed. Search consists in

splitting the state space with a branching function branch : CSP →
Store(N,CSP) and exploring successively the sub-problems created.

We call an element of the lattice Store(N,CSP) the branches. The
indices of the branches serve to order the child nodes. For instance,

a standard branching function consists in selecting the first non-

instantiated variable and to divide its domain into two halves—one

explored in each sub-problem. If the branching strategy is strictly

extensive (x < f (x)) over each branchbi ∈ branch(⟨d, P⟩), and does
not add variables into d , then this solving procedure is guaranteed

to terminate on finite domains. This solving algorithm is called

propagate and search.

3.2 Lattice of Search Trees
A novel aspect of this lattice framework is to view the search tree as

a lattice as well. It relies on the antichain completion which derives

a lattice to the antichain subsets of its powerset.
2

Definition 3.2 (Antichain completion). The antichain completion

of a lattice L, written A (L), is a lattice defined as:

A (L) = ⟨{S ⊆ P(L) | ∀x,y ∈ S, x ≤ y =⇒ x = y},
S ≤ Q if ∀y ∈ Q, ∃x ∈ S, x ≤L y⟩

It is equipped with the Smyth order [48].

The lattice of the search trees is defined as ST = A (CSP). Intu-
itively, an element q ∈ ST represents the frontier of the search tree

being explored. The antichain completion accurately models the

fact that parents’ nodes are not stored in q. Operationally, we view
q as a queue of nodes

3
, which is central to backtracking algorithms.

The missing piece to build and explore the CSP state space is the

queueing strategy which allows us to pop and push nodes onto the

queue.

Definition 3.3 (Queueing strategy). Let L be a lattice and A (L) be
its antichain completion. The pair of functions

pop : A (L) → A (L) × L
push : A (L) × Store(N, L) → A (L)

is a queueing strategy if, for any extensive function f : A (L)×L→
A (L) × Store(N, L), the function composition push ◦ f ◦ pop is

extensive over A (L).

In the context of CSP solving, we have L = CSP and A (L) = ST . As
examples of queueing strategies, we have depth-first search (DFS),

breadth-first search (BFS) and best-first search.

The state space of a CSP ⟨d, P⟩ is explored by computing the

fixpoint of the function solve({⟨d, P⟩}) which is defined as:

solve : ST → ST
solve = push ◦ (id × (branch ◦ propagate)) ◦ pop

This function formalizes the usual steps when solving a constraint

problem: pop a node from the queue, propagate it, divide it into

several sub-problems, and push these sub-problems onto the queue.

The output type of each function matches the input type of the next

one—notice that we use the identity function id to avoid passing

the search tree to propagate and branch. Reaching a fixpoint on

solve means that we explored the full search tree, and explored all

solutions if there is any.

3.3 The Issue of Compositionality
The solve function is parametrized by a branching and queuing

strategies. However, this does not suffice to program every search

strategy. For example, the depth-bounded search strategy—further

developed in the next section—consists in exploring the search

tree until a given depth is reached. To program this strategy in the

current framework, we must extend the definition of a CSP with a

depth counter defined over LMax (given in Section 2). The resulting

2
In the finite case, the antichain completion of a lattice L is isomorphic to the set of

ideals of L as shown by Crampton and Loizou [10]. We prefer the antichain formulation

because it is closer to the data structure of a queue.

3
Despite the name, this terminology of “queue” does not imply a particular queueing

strategy, i.e. the order in which the nodes are explored.
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search tree is defined as ST2 = A (CSP × LMax). We also extend

solve with two functions: inc for increasing the counter of the child
nodes, and prune for pruning the nodes at the given depth:

solve2 : ST2 → ST2

solve2 = push ◦ (id × (inc ◦ prune ◦ branch ◦ propagate)) ◦ pop

Although orthogonal to the depth counter, the types of the propagate
and branch functions must be modified to work over CSP × LMax.
Another solution would be to project elements of CSP × LMax with

additional id functions. A more elaborated version of this idea, re-

lying on monads to encapsulate data, is investigated in monadic
constraint programming [41]. The search strategies defined in this

framework require the users to have substantial knowledge in func-

tional language theory. Similarly, constraint solving libraries are

made extensible through software engineering techniques such as

design patterns. In all cases, a drawback is that it complicates the

code base, which is hard to understand and extend with new search

strategies. Moreover, such software architecture varies substantially

across solvers.

The problem is that we need to eithermodify existing structures or
integrate the strategies into some predefined software architecture

in order to program new search strategies. We call this problem the

compositionality issue. Our proposal is to rely on language abstrac-
tions instead of software abstractions to program search strategies.

4 LANGUAGE OVERVIEW
We give a tour of the spacetimemodel of computation and syntax by

incrementally building the iterative-deepening search strategy [19].

A key insight is that this search strategy is developed generically

with regard to the state space.

4.1 Model of Computation
The model of computation of spacetime is inspired by those of

(timed) concurrent constraint programming (CCP) and Esterel.

CCP model of computation. We view the structure of a CCP pro-

gram as a lattice ⟨L,⊨,⊔⟩ where ⊨ is called the entailment. The
entailment is the order of the lattice defined as a ⊨ b ≡ b ≤ a.
Following Scott’s information systems [45], CCP views the bottom

element ⊥ as the lack of information, the top element ⊤ as all the

information, the tell operator x ⊔ y as the join of the information

in x and y, and the ask operator x ⊨ y as an expression that is true

if we can deduce y from x .
CCP processes communicate through this lattice by querying for

information with the entailment, or adding information with join.

For example, consider the following definitions of prune and inc:

(when depth ⊨ 4 then “prune the subtree”) || (depth = depth ⊔ (depth + 1))

with | | the parallel composition. The first process is suspended on

depth ⊨ 4 until depth becomes greater than or equal to 4. Hence,

the second process is completed first if we initially have depth < 4.
The limitation of CCP is that it is not possible to write a process for

the statement “prune the subtree”. This is because a CCP process

computes over a fixed lattice, such as CSP , but it is not possible
to compute over its antichain completion, which is necessary for

creating and exploring its state space.

Space component of spacetime. The approach envisioned with

the spacetime paradigm is to view a search algorithm as a set of

concurrent processes exploring collaboratively a state space. In this

model, we rewrite solve2 as a parallel composition of processes as

follows (the arrows indicate read/write operations):

depth ∈ LMax ⟨d, P⟩ ∈ CSP

solve2 = push ◦ (inc || prune || branch || propagate) ◦ pop

branches ∈ Store(N,CSP × LMax)

Firstly, we pop a node from the queue which contains the variables

depth and ⟨d, P⟩. Then, similarly to CCP, the processes commu-

nicate by reading and writing into these variables. The Cartesian

product of the variables, called the space of the program, is auto-

matically synthesised by the spacetime semantics. This is reflected

in the type CSP ×LMax of branches. The processes only manipulate

branches through dedicated statements, namely space and prune
(that we introduce below).

Time component of spacetime. One remaining question is how to

synchronize processes so that every process waits for each other

before the next node is popped? Our proposal is to rely on the notion

of synchronous time of Esterel. During each instant, a process is

executed until it encounters a special statement called pause.4 Once
pause is reached, the process waits for all other processes to be

paused or terminated. The next instant is then started.

The novelty in spacetime is to connect the passing of time to

the expansion of the search tree. Concretely, an instant consists

in performing three consecutive steps: pop a node, execute the

processes until they are all paused, and push the resulting branches

onto the queue. We repeat these steps until the queue is empty or

all processes are terminated.

We now detail this model of computation through several ex-

amples, notably by programming the inc and prune processes. We

delay the presentation of propaдate and branch to Section 6.

4.2 Binary Search Tree
A spacetime program is a set of Java classes augmented with space-
time class fields (prefixed by the single_space, world_line or

single_time keywords) and processes (prefixed by proc or flow
keywords). The type of a spacetime field or local variable is a Java

class that implements a lattice interface providing the entailment

and join operators. A process does not return a value; it acts as

a coroutine mutating the spacetime variables in each instant. In

contrast, Java method calls are viewed as atomic operations in a

spacetime process.

One of the simplest process in spacetime is to generate an infinite

binary search tree:

class Tree {

public proc binary =

loop

space nothing end;

4
To ensure cooperative behavior among processes, the amount of work to perform

during an instant must be bounded in time.
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space nothing end;

pause;

end }

This process generates a binary tree in which every node is empty;

we will decorate these nodes with data later. A branch is created

with the statement space p end where the process p describes

the differences between the current node and the child node. In

the example, the difference is given by nothing which is the empty
process terminating immediately without effect, thus all generated

nodes will be the same.

In each instant, four actions are realized (we connect these ac-

tions to the model of computation in parenthesis):

(1) A node is popped from the queue (function pop).
(2) The process is executed until we reach a pause statement

(process between pop and push).
(3) We retrieve the sequence of branches, duplicate the back-

trackable state
5
for each space p end statement, and execute

eachp on a distinct copy of the state to obtain the child nodes
(writing into the variable branches).

(4) The child nodes are pushed onto the queue (function push).

These actions are repeated in the statement loop. Since the pro-
cess binary never terminates and the queue is never empty, the

state space generated is infinite. In summary, a process generates a

sequence of branches during an instant, and a search tree across

instants.

Now, we illustrate the use of spacetime variables by introducing

a node and depth counters:

class Node {

public single_space LMax node = new LMax(0);

public flow count = readwrite node.inc() }

class Depth {

public world_line LMax depth = new LMax(−1);

public flow count = readwrite depth.inc () }

A flow process executes its body p in each instant, the keyword

flow is a syntactic sugar for loop p; pause end. Both classes

work similarly: we increase by one their counters in each instant

with the method inc on LMax. We discuss two kinds of annotations

appearing in these examples: read/write annotations and spacetime
annotations.

Read/write annotations indicate how a variable is manipulated

inside a host function. It comes in three flavors: read x indicates

that x is only read by the function, write x that the function only

writes more information in x without reading it, and readwrite x
that the value written in x depends on the initial value of x . Every
write in x must respect its lattice order and this verification is left

to the programmer of the lattice. For example, the method x.inc()
is defined as x = x +1, and thus x must be annotated by readwrite.
These attributes are essential to ensure determinism when variables

are shared among processes, and for correctly scheduling processes.

Spacetime annotations indicate how a variable evolves in mem-

ory through time. For this purpose, a spacetime program has three

distinct memories in which the variables can be stored:

5
The backtrackable state is the Cartesian product of the variables prefixed by world_-
line (see below).

(i) Globalmemory (keyword single_space) for variables evolv-
ing globally to the search tree. A single_space variable has
a unique location in memory throughout the execution. For

example, the counter node is a single_space variable: since
we explore one node in every instant, we increase its value

by one in each instant.

(ii) Backtrackable memory (keyword world_line) for variables
local to a path in the search tree. The queue of nodes is the

backtrackable memory. For example, the value of the counter

depth must be restored on backtrack in the search tree.

(iii) Local memory (keyword single_time) for variables local
to an instant and reallocated in each node. A single_time
variable only exists in one instant. We will encounter this

last annotation later on.

Another feature of interest is the support of modular program-
ming by assembling processes defined in different classes. As an

example, we combine Tree.binary and Depth.countwith the par-
allel statement:

public proc binary_stats =

module Tree generator = new Tree ();

module Depth depth = new Depth ();

par run generator . binary () || run depth.count() end

end

The variables generator and depth are annotated with module to

distinguish them from spacetime variables. We use the keyword

run to disambiguate between process calls and method calls.

Last but not least, the disjunctive parallel statement par p ||
q end executes two processes in lockstep. It terminates once both
processes have terminated. Dually, we have the conjunctive parallel
statement par p <> q end which terminates (i) in the next instant

if one of p or q terminates, or (ii) in the current instant if both

p and q terminate. The condition (i) implements a form of weak
preemption. An instant terminates once every process is paused or

terminated. In this respect, pause can be seen as a synchronization

barrier among processes.

4.3 Depth-bounded Search
Now we are ready to program a search strategy in spacetime. We

consider the strategy BoundedDepth which bounds the exploration

of the search tree to a depth limit:

public class BoundedDepth {

single_space LMax limit;

public BoundedDepth(LMax limit) { this . limit = limit ; }

public proc bound_depth =

module Depth counter = new Depth ();

par

<> run counter . count ()

<> flow

when counter .depth |= limit then prune end

end

end

end }

Whenever depth is greater than or equal to limit we prune the re-
maining search subtree. The construction of the search tree through

time is illustrated in Figure 1 with limit set at 2. The black dots are
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t1 t2 t3 t6 t7

Figure 1: Progression of bounded depth search in each instant with maximum depth equals to 2.

the nodes already visited, the large one is the one currently being

visited and the white ones are those pushed onto the queue.

The disjunctive parallel composes two search trees by union,

whereas the conjunctive parallel composes them by intersection.

For example, if we have binary() || bound_depth(), the search
tree obtained is exactly the one of binary(), while binary() <>
bound_depth() prunes the search tree at some depth limit. Over

two branches, the statement prune || space p creates a sin-

gle branch space p, while prune <> space p creates a pruned

branch. This is made clear in Section 5.2 where we formalize these

composition rules.

4.4 A Glimpse of the Runtime
The class Tree is processed by the spacetime compiler which com-

piles every process into a regular Java method. For example, the

process binary is compiled into the following Java method:

public Statement binary () {

return new Loop(

new Sequence(Arrays. asList (

new SpaceStmt(new Nothing ()),

new SpaceStmt(new Nothing ()),

new Delay(CompletionCode.PAUSE)))); }

The compiled method returns the abstract syntax tree (AST) of

the process. This AST is then interpreted by the runtime engine

SpaceMachine:

public static void main(String[] args ) {

Tree tree = new Tree ();

StackLR queue = new StackLR ();

SpaceMachine machine = new SpaceMachine(tree.binary (), queue);

machine.execute (); }

We parametrize the runtime engine by the queue StackLR: a tra-
ditional stack exploring the tree in depth-first search from left to

right. Importantly, it means that the spacetime program is generic

with regard to the queueing strategy. The method execute returns

either when the spacetime program terminates, the queue becomes

empty or we reach a stop statement. This latest statement offers a

way to stop and resume a spacetime program outside of the space-

time world, which is handy for interacting with the external world.

In contrast, a pause statement is resumed automatically by the

runtime engine as long as the queue is not empty.

Being aware of the runtime mechanism is helpful to extend

BoundedDepth to the restart-based strategy iterative depth-first
search (IDS) [19]. IDS successively restarts the exploration of the

same search tree by increasing the depth limit. This strategy com-

bines the advantages of breadth-first search (diversifying the search)

and depth-first search (weak memory consumption). Assuming we

have a class BoundedTree combining BoundedDepth and Tree, we
program IDS in the host language as follows:

public static void main(String[] args ) {

for(int limit =0; limit < max_depth(); limit ++) {

BoundedTree tree = new BoundedTree(new LMax(limit));

StackLR queue = new StackLR ();

SpaceMachine machine = new SpaceMachine(tree.search (), queue);

machine.execute (); }}

We introduce additional examples of search strategies in Section 6,

and show how to combine two restart-based strategies in spacetime.

5 SEMANTICS OF SPACETIME
We develop the semantics of spacetime independently from the host

language (Java in the previous section). To achieve that, we suppose

the program is flattened: every module definition and process call

are inlined, and no recursion is allowed in processes. We obtain a

lighter abstract syntax of the spacetime statements formalized as

follows (p,q are processes, x,y are identifiers, and T is a host type):

⟨p, q⟩ ::= T x→|⟲ |↓ | when x |= y then p else q

| f (x
w |r |rw
1

, . . . , x
w |r |rw
n )

| nothing | pause | stop | loop p | p ; q | p || q | p <> q
| space p | prune

Spacetime annotations are shorten as follows:→ stands for single_-
space, ⟲ for single_time and ↓ for world_line.6 Read/write an-
notations are given byw for write, r for read and rw for readwrite.
Without loss of generality, we encapsulate the interactions between

spacetime and its host language in function calls.

5.1 Behavioral Semantics
The semantics of spacetime is inspired by the logical behavioral

semantics of Esterel, a big-step semantics, as defined in [6, 29]. The

semantic rules of spacetime defining the control flow of processes

(for example loop or pause) are similar to those in Esterel. We

adapt these rules to match the two novel aspects of spacetime:

(i) Storing lattice-based variables in one of the three memories

(instead of Esterel’s Boolean signals).

(ii) Defining a structure to collect and compose the (pruned)

branches created during an instant.

The rules proper to spacetime are specific to either (i) or (ii).

Given the set of outputs produced by a program, a derivation

in the behavioral semantics is a proof that a program transition is

valid. The behavioral transition rule is given as:

Q, L ⊢ p
O ′
−−−−→
I⊔O

p′

6
These symbols reflect how the variables evolve in the search tree. For example, ↓

depicts an evolution from the root to a leaf of the tree along a path.
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where the program p is rewritten into the program p′ under (i) the
queue Q equipped with a queueing strategy (pop,push), (ii) the
set of locations L ⊂ Loc providing a unique identifier to every

declaration of variable, (iii) the input I , and (iv) the outputs O and

O ′. We denote the set of syntactic variable names (as appearing

in the source code) with Name, such that Name ∩ Loc = ∅. We

write L Û∪ {ℓ} the disjoint union, which is useful to extract a fresh

location ℓ from L.
The goal of behavioral semantics is not to compute an output

O but to prove that a transition is valid if we already know O . We

obtain a valid derivation if the outputO ′ derived by the semantics is

equal to the provided outputO . Conceptually, the behavioral seman-

tics allows processes to instantaneously broadcast information. In

the following, we call the input and output structures universe and
we writeU ′ for the output O ′, andU = I ⊔O for the input/output

provided.

Space structure. The variable environment of a program, called its

space, stores the spacetime variables. The spacetime annotations

are given by the set spacetime = {→,⟲, ↓}. The set of values of
a variable is given by its type in the host language, which must

be a lattice structure. From the spacetime perspective, we erase

the types in the set Value which is the disjoint union of all types,

and we delegate typing issues to the host language. Putting all

the pieces together, the set of spacetime variables Var is the poset
{⊤} ∪ (spacetime × Value). We need a distinct top element ⊤ for

representing variables that are merged with a different spacetime

or type—this can be checked at compile-time.

Given a set of locations Loc, the lattice of the spaces of the

program is defined as Space = Store(Loc,Var). The element ⊥ is the

empty space. Given a space S ∈ Space, we define the subsets of the
single space variables with S→, the single time variables with S⟲

and the world line variables with S↓. In addition, given a variable

(st,v) ∈ S(ℓ) at location ℓ, we define the projections Sst (ℓ) = st and
SV (ℓ) = v to respectively extract the spacetime and the value of

the variable. SV (ℓ) maps to ⊥ if ℓ is undefined in S .

Universe structure. A universe incorporates all the information pro-

duced during an instant including the space, the completion code

and the sequence of branches. The completion code models the state

of a process at the end of an instant: normally terminated (code

0), paused in the current instant with pause (code 1) or stopped

in the user environment with stop (code 2). We denote the set of

completion codes with Compl = ⟨{0, 1, 2}, ≤N⟩. We describe the

sequence of branches B∗ in the next section. The universe structure

is defined as follows:

Universe = Space × Compl × B∗

GivenU ∈ Universe, we define the projectionsU S
,U k

andU B
re-

spectively mapping to the space, completion code and the sequence

of branches. We also writeUV
instead ofU SV

,U→ instead ofU S→

and similarly for ⟲ and ↓.

5.2 Search Semantics
In this section, we use the following relevant subset of spacetime:

⟨p, q⟩ ::= p ; q | p || q | p <> q | space p | prune | α

where p,q ∈ Proc with Proc the set of all the processes, and α is

an atomic statement which is not composed of other statements.

We can extend the definitions given below to the full spacetime

language without compositional issues.

We give the semantics of the search tree statements with a

branch algebra. We have a set of all branches defined as B =

{space w | w ∈ Space↓} ∪ {prune}. That is to say, a branch is

either labelled by a world_line space or pruned.

Definition 5.1 (Branch algebra). The branch algebra is defined

over a sequence of branches ⟨B∗, ◦,∨,∧⟩ where all operators are
associative, ◦ is noncommutative, and ∨ and ∧ are commutative.

The empty sequence ⟨⟩ is the identity element of the three operators.

The operators ◦, ∨ and ∧ match the commutative and associative

laws of the semantics of the operators ;,|| and <> respectively.

Sequence composition. Given bi ,bj ∈ B with 1 ≤ i ≤ n and

1 ≤ j ≤ m, the sequence operator ◦ performs the concatenation of

two sequences of branches as follows:

⟨b1, . . . ,bn⟩ ◦ ⟨b
′
1
, . . . ,b ′m⟩ = ⟨ b1, . . . ,bn,b

′
1
, . . . ,b ′m ⟩

Parallel compositions. We define the operators ∨1 and ∧1 to com-

bine two branches and then lift these operators to sequences of

branches. Two sequences of branches are combined by repeating

the last element of the shortest sequence when the sizes differ.

Givenw,w ′ ∈ Space↓ and b ∈ B, we define the disjunctive parallel
operators ∨1 between two branches and ∨ between two sequences

of branches as follows:

b ∨1 prune = b
space w ∨1 space w ′ = space w ⊔w ′

⟨b1, . . . ,bn⟩ ∨ ⟨b
′
1
, . . . ,b ′m⟩ ={

⟨ b1 ∨
1 b ′

1
, . . . , bn−1 ∨

1 b ′m−1, bn ∨
1 b ′m ⟩ if n =m

⟨ b1 ∨
1 b ′

1
, . . . , bn−1 ∨

1 b ′m, bn ∨
1 b ′m ⟩ if n > m

The case wherem > n is tackled by the commutativity of ∨. The

conjunctive parallel operators ∧1 and ∧ are defined similarly but

for prune:

b ∧1 prune = prune

This algebra allows us to delete, replace or increase the informa-

tion in a branch. For example, given a process p:

• p <> (space nothing ; prune) deletes every branch

created by p but the first.

• p <> (space nothing ; prune ; space nothing) deletes
the second branch.

• p || (prune ; space q ; prune) increases the information

in the second branch by q.

We can also obtain any permutation of a sequence of branches

with a suited push function. The only operation not supported is

weakening the information of one branch. We have yet to find a

use-case for such an operation.

5.3 Semantics Rules
The semantics rules of spacetime are given in Figure 2. We isolate

host computations by relying on the host transition rule e
H ′
−−−→
H
→ v
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nothing

Q , {} ⊢ nothing
⊥, 0 ⟨⟩
−−−−−→
U

nothing

pause

Q , {} ⊢ pause
⊥, 1, ⟨⟩
−−−−−−→

U
nothing

stop

Q , {} ⊢ stop
⊥, 2, ⟨⟩
−−−−−−→

U
nothing

hcall

f (ℓa1
1
, . . . , ℓann )

H ′
−−−−−−−→
host(U S )

→ v

Q , {} ⊢ f (ℓa1
1
, . . . , ℓann )

(space(H ′),0,⟨⟩)
−−−−−−−−−−−−−→

U
nothing

loop

Q , L ⊢ p
U ′
−−→
U

p′ U k , 0

Q , L ⊢ loop p
U ′
−−→
U

p′ ; loop p

when-true

UV (ℓ1) ⊨ UV (ℓ2)↠ true Q , L ⊢ p
U ′
−−→
U

p′

Q , L ⊢ when ℓ1 |= ℓ2 then p else q
U ′
−−→
U

p′

when-false

UV (ℓ1) ⊨ UV (ℓ2)↠ v v = false ∨ v = unknown Q , L ⊢ q
U ′
−−→
U

q′

Q , L ⊢ when ℓ1 |= ℓ2 then p else q
U ′
−−→
U

q′

var-decl⟲

U ′ = ({(ℓ, (⟲, ⊥T ))}, 0, ⟨⟩) Q , L ⊢ p[x → ℓ]
U ′′
−−−→
U

p′

Q , L Û∪ {ℓ } ⊢ T x⟲ ; p
U ′⊔U ′′
−−−−−−→

U
T x⟲ ; p′

start-var-decl→↓

st ,⟲ x ∈ Name U ′ = ({(ℓ, (st, ⊥T ))}, 0, ⟨⟩) Q , L ⊢ p[x → ℓ]
U ′′
−−−→
U

p′

Q , L Û∪ {ℓ } ⊢ T x st ; p
U ′⊔U ′′
−−−−−−→

U
T ℓst ; p′

prune

Q , {} ⊢ prune
(⊥,0,⟨prune⟩)
−−−−−−−−−−−→

U
nothing

resume-var-decl→↓

ℓ ∈ Loc v =
{
(→, ⊥T ) if st =→
(↓, π2(pop(Q ))(ℓ)) if st =↓

U ′ = ({(ℓ, v)}, 0, ⟨⟩) Q , L ⊢ p
U ′′
−−−→
U

p′

Q , L ⊢ T ℓst ; p
U ′⊔U ′′
−−−−−−−→

U
T ℓst ; p′

space-pruned

U B , ⟨space W ⟩

Q , {} ⊢ space p
(⊥,0,⟨space ⊥⟩)
−−−−−−−−−−−−−→

U
nothing

space

U B = ⟨space W ⟩ ⊥, {} ⊢ p
U ′

−−−−−−−−−−→
U⊔(W ,0,⟨⟩)

p′ U ′k = 0 U ′→ = U ′⟲ = ∅

Q , {} ⊢ space p
(⊥,0,⟨space U ′↓⟩)
−−−−−−−−−−−−−−−→

U
nothing

enter-seq

Q , L ⊢ p
U ′
−−→
U

p′ U ′k , 0

Q , L ⊢ p ; q
U ′
−−→
U

p′ ; q

next-seq

U B = B ◦ B′ Q , L ⊢ p
U ′

−−−−−−−−−−→
(U S ,U k ,B)

p′ U ′k = 0 Q , L′ ⊢ q
U ′′

−−−−−−−−−−−→
(U S ,U k ,B′)

q′

Q , L Û∪ L′ ⊢ p ; q
U ′⊔◦U ′′
−−−−−−−→

U
q′

par
∨

Q , L ⊢ p
U ′
−−→
U

p′ Q , L′ ⊢ q
U ′′
−−−→
U

q′

Q , L Û∪ L′ ⊢ p || q
U ′⊔∨U ′′
−−−−−−−−→

U
p′ || q′

par
∧

Q , L ⊢ p
U ′
−−→
U

p′ Q , L′ ⊢ q
U ′′
−−−→
U

q′ U ′k , 0 ∧U ′′k , 0

Q , L Û∪ L′ ⊢ p <> q
U ′⊔∧U ′′
−−−−−−−−→

U
p′ <> q′

exit-par
∧

Q , L ⊢ p
U ′
−−→
U

p′ Q , L′ ⊢ q
U ′′
−−−→
U

q′ U ′k = 0 ∨U ′′k = 0

Q , L Û∪ L′ ⊢ p <> q
U ′⊔∧U ′′
−−−−−−−−→

U
nothing

Figure 2: Behavioral semantics rules of spacetime.

which reduces the expression e into the value v with the input/out-

put host environment H and the output environment H ′. The in-
terface between spacetime and the host language is realized by a

pair of functions (host, space) such that host maps the space S into

the host environment H and vice versa. We write e ↠ v when the

space of the program is not modified. We explain each fragment of

the semantics in the following paragraphs.

The axioms nothing, pause and stop set the completion code

respectively to terminated, paused and stopped.We leave the output

space and branches empty.

The main interaction with the host language is given by the rule

hcall. The function f and its arguments are evaluated in the host

version of the input/output space, written host(U S ). The properties

guaranteed by the spacetime semantics depend on the properties

fulfilled by the host functions.

The rule loop simulates an iteration of the loop by extracting

and executing the body p outside of the loop. We guarantee that

p is not instantaneous by forbidding the completion code k to be

equal to 0.

The conditional rules when-true and when-false evaluate the

entailment result of x ⊨ y to execute either p or q. In case the

entailment status is unknown, which happens if x and y are not

ordered, we promote unknown to false. This is reminiscent of the

closed world assumption in logic programming: “what we do not

know is false”.
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start-var-decl→↓

exit-par-∨

when-true

UV (ℓ0) ⊨ 1 ↠ true

space

hcall

inc(ℓrw
0
)

H ′
−−−−−−→
host(S2)

→ v

Q , {} ⊢ inc(ℓrw
0
)
(space(H ′),0,⟨⟩)
−−−−−−−−−−−−−→
(S2 ,0,⟨⟩)

nothing

Q , {} ⊢ space inc(ℓrw
0
)
({},0,⟨space S2⟩)
−−−−−−−−−−−−−−−→
(S1 ,0,⟨space S2⟩)

nothing

Q , {} ⊢ when ℓ0 |= 1 then space inc(ℓrw
0
)
({},0,⟨space S2⟩)
−−−−−−−−−−−−−−−→
(S1 ,0,⟨space S2⟩)

nothing

hcall

inc(ℓrw
0
)

H ′
−−−−−−→
host(S1)

→ v

Q , {} ⊢ inc(ℓrw
0
)
(space(H ′),0,⟨⟩)
−−−−−−−−−−−−−−−→
(S1 ,0,⟨space S2⟩)

nothing

Q , {} ⊢ (when ℓ0 |= 1 then space inc(ℓrw
0
)) <> inc(ℓrw

0
)
(S1 ,0,⟨space S2⟩)
−−−−−−−−−−−−−−−→
(S1 ,0,⟨space S2⟩)

nothing U ′ = ({(ℓ0, (↓, 0))}, 0, ⟨⟩)

Q , {ℓ0 } ⊢ LMax x↓; ((when x |= 1 then space inc(xrw)) <> inc(xrw))
U ′ ⊔ ({(ℓ0 ,(↓,1))},0,⟨space {(ℓ0 , (↓, 2))}⟩)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
({(ℓ0 ,(↓,1))},0,⟨space {(ℓ0 , (↓, 2))}⟩)

nothing

Figure 3: An example of derivation in the behavioral semantics.

5.3.1 Semantics of spacetime variables. The variable declaration
rules register the variables in the space or queue memory. A vari-

able’s name x must be substituted to a unique location ℓ. Locations

are necessary to distinguish variables with the same name in the

space and queue—this is possible if the scope of the variable is

re-entered several times during
7
and across instants. In the rules

var-decl⟲ and start-var-decl→↓, we extract a fresh location ℓ

from L and substitute x for ℓ in the program p, which is written

p[x → ℓ].8 The substitution function is defined inductively over

the structure of the program p. We give its two most important

rules:

y[x → ℓ] 7→

{
ℓ if x = y
y if x , y

(T yst ; p)[x → ℓ] 7→
{
T yst ; p if x = y
T yst ; p[x → ℓ] if x , y

It replaces any identifier equals to x by ℓ, and stops when it reaches

a variable declaration with the same name.

For single_time variables, we create a new location in each

instant (var-decl⟲). For single_space and world_line variables,
we create a new location only during the first instant of the state-

ment (start-var-decl→↓), and the next instants reuse the same

location (resume-var-decl→↓).

In the first instant, the values are initialized to the bottom ele-

ment ⊥T of the lattice T . In the next instants, we retrieve the value

of a world_line variable in the queue by popping one node, and

then extracting the value at location ℓ from that node. The values

of single_space variables are transferred from one instant to the

next by the reaction rules introduced in the next section.

5.3.2 Semantics of search statements. The statement prune is an
axiom creating a single pruned branch. For space p, we have

two cases: either we execute p under the input/output branch

⟨space W ⟩ (rule space), or if another process prunes this branch,
we avoid executing p (rule space-pruned). The execution of the

space statement does not impact the variables in the current in-

stant, which is materialized by setting the space to ⊥ in the output

7
This is a problem known as reincarnation in Esterel [6].

8
The variable declaration must be evaluated with regard to its body, this is why the

body p follows the declaration. We can transform any variable declaration Type x st

which is not followed by any statement to Type x st; nothing.

universe. In addition, we require that p terminates instantaneously,

only writes into world_line variables and does not create nested

branches.

To specify the sequential and parallel statements, we extend join

overUniversewith a branch operator.We have (S,k,B)⊔∧(S ′,k ′,B′)
equals to (S ⊔ S ′,k ⊔ k ′,B ∧ B′), and similarly for ◦ and ∨.

To formalize the sequence p ; q, we have the rule enter-seq
which tackles the case where p does not terminate during the cur-

rent instant, and the rule next-seq where p terminates and q is

executed. The disjunctive parallel statement p || q derives p and

q concurrently and merges their output universes with ⊔∨ (rule

par
∨
). Finally, the conjunctive parallel statement p <> q is similar

to || when none of p or q terminates (rule par
∧
). However, if one

process terminates, we rewrite the statement to nothing which

prevents this statement to be executed in future instants (rule exit-

par
∧
). Note that the semantics of composition in space of || and

<> match their respective semantics of composition in time.

5.3.3 An example of derivation. We illustrate the mechanics of the

behavioral semantics with a short example:

LMax x
↓
; ((when x |= 1 then space inc(x

rw
)) <> inc(xrw ))

Two processes communicate over the variable x . The first creates
a branch incrementing x by one if it is greater than 1, while the

second increments x in the current instant. To derive this process

in the behavioral semantics, we set the input/output universe to

U = ({(ℓ0, (↓, 1))}, 0, ⟨space {(ℓ0, (↓, 2))}⟩) and attempt to prove

that the output universe (the structure above the arrow) is equal to

U . For clarity, we set S1 = {(ℓ0, (↓, 1))} and S2 = {(ℓ0, (↓, 2))}. The
derivation is given in Figure 3.We notice that the statement space is
derived with the input/output space S2 instead of S1. Operationally,
it implies that the branchmust be evaluated at the end of the current

instant.

5.4 Semantics Across Instants
A spacetime program is automatically executed until it terminates,

stops or its queue of nodes becomes empty. Therefore, we must

lift the transition rule to succession of instants, which gives the
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react

causal(p) Q , Li ⊢ p
U ′
−−→
Hi

p′ Q ′ = push(Q ,U ′B )

U ′k = 1 and Q ′ is not empty i + 1, L ⊢ ⟨Q ′, p′⟩
H ′
↪−−→
H
⟨Q ′′, p′′⟩

H ′′ = {(j ,U ′′ ⊔ (U ′→, 0, ⟨⟩)) | (j ,U ′′) ∈ H ′ }

i , L ⊢ ⟨Q , p ⟩
{(i ,U ′)}⊔H ′′
↪−−−−−−−−−−→

H
⟨Q ′′, p′′⟩

exit-react

causal(p)

Q , Li ⊢ p
U ′
−−→
Hi

p′ Q ′ = push(Q ,U ′B ) U ′k , 1 or Q ′ is empty

i , L ⊢ ⟨Q , p ⟩
{(i ,U ′)}
↪−−−−−−→

H
⟨Q ′, p′⟩

Figure 4: Reaction rules of spacetime.

following reaction rule:

i,L ⊢ ⟨Q,p⟩
H ′
↪−−→
H
⟨Q ′,p′⟩

where the state ⟨Q,p⟩ is rewritten into the state ⟨Q ′,p′⟩ with Q
a queue with a queueing strategy (pop, push), and p a process. In

addition, we have: (i) a counter of instants i ∈ N, (ii) a sequence
of sets of locations L ∈ Store(N, Loc) where Li ∈ L is the set of

locations at the instant i , (iii) the sequence of input/output universes
H ∈ Store(N,Universe) where Hi is the input/output at the instant

i , and (iv) the sequence of output universes H ′ ∈ Store(N,Universe).
The lifting to sequence of universes is inspired by ReactiveML [24].

The reaction rules are defined in Figure 4. The rule react models

the passing of time from one paused instant to the next. Of interest,

we notice that the values of the single_space variables are joined

into all of the future universes. We also observe that the two rules

react and exit-react are exclusive on the termination condition.

We now discuss the side condition causal(p) which performs the

causality analysis of the program in each instant.

5.5 Causality Analysis
Causality analysis is crucial to prove that spacetime programs are

reactive, deterministic and extensive functions. An example of non-

reactive program is when x |= y then f(write y) end. The
problem is that if we add information in y, the condition x |= y
might not be entailed anymore, which means that no derivation in

the behavioral semantics is possible. This is similar to emitting a

signal in Esterel after we tested its absence. Due to the lattice order

on variables, we can however write on a value after an entailment

condition, consider for example when x |= y then f(write x)
end. Whenever x |= y is entailed, it will stay entailed even if we

later write additional information on x , so this program should be

accepted.

The causality analysis symbolically executes an instant of a

process, yielding the set of all symbolic paths reachable in an instant.

It also symbolically executes the paths of all branches generated in

each instant. For space reason, we only show the most important

part of the causality analysis: the properties that a path must fulfil

to be causal. A path is a sequence of atomic statements ⟨a1, . . . ,an⟩
where ai is defined as:

⟨atom⟩ ::= x ⊨ y | f (x
w |r |rw
1

, . . . , x
w |r |rw
n )

For example, the process when x |= y then f (xr ) else д(xr )
generates two paths: ⟨x ⊨ y, f (xr )⟩ for the then-branch, and ⟨y ⊨
x,д(xr )⟩ for the else-branch. A path p is causal if for all atoms

ai ∈ p the following two conditions hold.

First, for each entailment atom ai = x ⊨ y we require:

∀zb ∈ Vars(pi+1.. |p |), z = y =⇒ b = r (1)

with Vars(p) the set of all variables in the path p. It ensures all
remaining accesses on y to be read-only.

Second, for each function call ai = f (xb1
1
, ..., xbnn ) and each

argument x
bk
k of f we require:

∀zb ∈ Vars(pi+1.. |p |), xk = z∧(bk = r∨bk = rw) =⇒ b = r (2)

Whenever a variable is accessed with read or readwrite, it can
only be read afterwards. A consequence is that a variable cannot

be accessed by two readwrite during a same instant.

Definition 5.2 (Causal process). A process is causal if for all its

instants i , every path p in the instant i is causal ((1) and (2) hold).

5.6 Reactivity, Determinism and Extensiveness
We now only consider causal spacetime programs. In this section,

we sketch the proofs that the semantics of spacetime is determinis-

tic, reactive and an extensive function during and across instants.

Importantly, these properties only hold if the underlying host func-

tions meet the same properties. The two first properties are typical

of the synchronous paradigm and are defined as follows.

Definition 5.3 (Determinism and reactivity). For any state ⟨Q,p⟩,
the derivation

0,L ⊢ ⟨Q,p⟩
H ′
↪−−→
H
⟨Q ′,p′⟩

is deterministic (resp. reactive) if there is at most (resp. at least) one

proof tree of the derivation.

Lemma 5.4. The semantics of spacetime is reactive and determin-
istic.

The proofs are given in Appendices A.1 and A.2. They essentially

verify the completeness and disjointness of the rules.

Lemma 5.5. The semantics of spacetime is extensive over its space
during an instant.

Proof. Any write in the space is done through a variable decla-

ration or a host function. The declaration rules only add more infor-

mation into the space by using the join operator ⊔. Otherwise, this

property depends on the extensiveness of the host functions. □

To define the extensiveness property of a program across instants,

we rely on the notion of observable space. Given a space S ∈ Space ,
its observable subset obs(S) ⊆ S is the set of variables that can still

be used in a future instant.

Lemma 5.6. Every observable variable is stored in either the queue
or in a single_space variable.

Proof. The world_line variables are stored in a queue of nodes
when pushed (rule react). In the case of a pruned node, the world_-
line variables are not observable since no child node can ever used
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their values again. The single_time variables are reallocated in

each instant, thus not observable in future instants. □

Lemma 5.7 (Extensiveness). Given a sequence of universes H
and two instant indices i > j, we have HS

i ⊨ obs(HS
j ).

Proof. By Lemma 5.6, it is sufficient to only look at the queue

and single_space variables: (i) the queue is extensive by Def-

inition 3.3 of the queueing strategy, and (ii) the single_space
variables are joined with their previous values (rule react), thus

single_space variables that exist in HS
i and HS

j are ordered by in-

duction on the instant indices. Therefore our semantics is extensive

with regard to the sequence of universes derived. □

6 CONSTRAINT PROGRAMMING IN
SPACETIME

In Section 4, we defined a process generating an infinite binary

search tree. As the underlying structure of the state space is a

lattice, the “raw state space” can be programmed by the user. We

demonstrate this fact by programming a process generating the

state space of a constraint satisfaction problem (CSP).

A search strategy can be specialized or generic with regard to the

state space. For example, the strategy IDS (introduced in Section 4.4)

can be reused on the CSP state space without modification. As an

additional example of generic search strategy, we consider lim-

ited discrepancy search (LDS) and its variants. It can be combined

effortlessly with IDS and the CSP state space generator. We also

introduce a branch and bound strategy which is bound to the CSP

state space. Overall, the goal is to show that search strategies can

be developed independently from the state space while retaining

their compositionality.

6.1 Generating the CSP State Space
We consider a basic but practical solver using the propagate and

search algorithm presented in Section 3.

class Solver {

single_time ES consistent = unknown;

ref world_line VStore domains;

ref world_line CStore constraints ;

public Solver(VStore domains, CStore constraints ) { . . .}

public proc search = par run propagation () <> run branch() end

flow propagation =

consistent <- constraints.propagate(readwrite domains);

when consistent |= true then prune end

end

flow branch =

when unknown |= consistent then

single_time IntVar x = failFirstVar (domains);

single_time Integer v = middleValue(x );

space constraints <- x.le(v) end; // x ≤ v
space constraints <- x.gt(v) end // x > v

end

// Interface to the Choco solver .

private IntVar failFirstVar (VStore domains) { . . . }

private Integer middleValue( IntVar x) { . . . } }

This example introduces new elements of syntax: (i) the ref key-
word which indicates that the variable name is an alias to a space-

time variable declared in another class, (ii) the tell operator x <- e
which is a syntactic sugar for write x.join(e), the join operation

x = x ⊔ e , and (iii) the keywords true, false and unknown that

are elements of the lattice ES explained below. We also remark that

read annotations apply by default when not specified on variables.

The lattices VStore and CStore are respectively the variable

store and the constraint store. The constraint solver Choco [31] is

abstracted behind these two lattices and provides the main opera-

tions to propagate and branch on the state space. The branching

strategy is usually a combination of a function selecting a vari-

able in the store (here failFirstVar) and selecting a value in the

domain of the variable (here middleValue). The two variables stor-
ing these results are annotated with single_time since they are

only useful in the current instant. We split the state space with the

constraints x ≤ v and x > v . In the implementation, this code is

organized in a more modular way so we can assemble various parts

of the branching strategies.

The lattice ES is defined as {true, false, unknown} with the total

order false ⊨ true ⊨ unknown. It is used to detect if the current

node of the CSP is a solution (true), a failed node (false) or if we do
not know yet (unknown). In the process propagation, we prune
the current subtree if we reached a solution or failed node.

6.2 Branch and Bound Search
Branch and bound (BAB) is an algorithm to find the optimal solution

of a CSP according to an objective function. BAB reasons over the

whole search tree by keeping track of the best solution obtained so

far, in contrast to propagation which operates on a single node at a

time. It is implemented in the following class MinimizeBAB.

public class MinimizeBAB {

ref world_line VStore domains;

ref single_time ES consistent ;

ref single_space IntVar x;

single_space LMin obj = bot;

public MinimizeBAB(VStore domains, ES consistent, IntVar x) { ...}

public proc solve = par run minimize() <> run yield_objective () end

proc minimize =

loop

when consistent == true then

single_space LMin pre_obj = new LMin(x.getLB ());

pause;

obj <− pre_obj ;

else pause end

end

flow yield_objective =

consistent <− updateBound(write domains, write x, read obj)

static ES updateBound(VarStore domains, IntVar x, LMin obj) { ... }

Along with the current variable store, we have the variable x to

be minimized and its current best bound obj of type LMin. The
single_space attribute indicates that the bound obj is global to
the search tree and will not be backtracked. The class has two main

processes: (i) minimize strengthens the bound obj with the value

obtained in the previous solution node, and (ii) yield_objective,
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Figure 5: Combination of bounded depth and bounded discrepancy search.

through the function updateBound, interfaces with Choco to up-

date domains with x < obj, so the next solution we find have a

better bound.

There is an important detail to notice: we use a temporary vari-

able pre_obj to store the latest bound instead of updating obj
directly. Interestingly, if we do not, the causality analysis will fail

since we have a cyclic dependency in the data: obj depends on

domains and vice versa. Fortunately, the causality analysis pre-

vents us from having a bug: adding the current bound in the CSP

would turn a solution node into a failed node.

6.3 Limited Discrepancy Search and Variants
For some problems, the branching strategy can order the branches

such that the left one is more likely to reach a solution first. Limited

discrepancy search (LDS) was introduced to take advantage of this

ordering property. It is based on the notion of discrepancies which
is the number of right branches taken to reach a leaf node. In

its original version [16], LDS successively increases the number

of discrepancies a branching strategy can take by restarting the

exploration of the full tree. The paths with 0, 1, 2 and 3 discrepancies

in a tree of depth 3 are given as follows:

The first iteration generates the leftmost path, the second iteration

allows one discrepancy, and so on. The search is complete if the

discrepancy limit is not reached during one iteration. An iteration

of LDS is programmed in spacetime as follows:

public class BoundedDiscrepancy {

single_space LMax limit;

world_line LMax dis = new LMax(0);

public BoundedDiscrepancy(LMax limit) { ... }

public flow bound =

space nothing end;

when dis |= limit then prune

else space readwrite dis. inc () end end

end }

Initially, the discrepancy counter dis is set to 0. The left branch is

always taken, which we represent with a neutral space nothing
end statement. The right branch is taken only if the discrepancies

counter is less than the limit, otherwise we prune this branch. We

can restart this search with the same technique as the one used for

IDS (Section 4.4).

A drawback of LDS is that at each iteration k , it re-explores
all paths with k or less discrepancies. In [20], Korf proposes an

improved version of LDS (ILDS) where only paths with exactly k

discrepancies are explored. We provide a library of reusable im-

proved LDS strategies including ILDS, depth-bounded discrepancy

search (DDS) [62] and LDS variants [30] in the implementation.

In addition to creating a search strategy from scratch, we of-

ten need to assemble existing strategies to obtain the best of two

approaches. For example, the combination of LDS with IDS is dis-

cussed in [16], as well as the combination of DDS with IDS in [62].

These combinations can be easily programmed in spacetime; we ob-

tain the first by combining BoundedDepth and BoundedDiscrepancy:

module BoundedDepth bd = new BoundedDepth(new LMax(2));

module BoundedDiscrepancy bdis =

new BoundedDiscrepancy(new LMax(1));

par run db.bound() <> run bdis.bound() end

The result of this combination is shown in Figure 5. Similarly we

can use the disjunctive parallel operator || to obtain their union.

What’s more, we can apply this strategy to the CSP state space,

possibly augmented with the BAB process, in the very same way.

7 IMPLEMENTATION
The compiler of spacetime performs static analyses to ensure well-

formedness of the program. It includes common analyses and trans-

formations on synchronous programs such as causality analysis,

detection of instantaneous loop and reincarnation [29, 52]. Specifi-

cally in spacetime, we ensure that every statement space p has an

instantaneous body and does not contain nested space or prune
statements. In addition, we provide several analyses to integrate

Java and spacetime in a coherent way, especially for initializing

objects with existing spacetime variables (keyword ref). These
analyses are out of scope in this paper, but we provide a com-

prehensive list of the analyses in the file src/errors.rs of the

implementation.

As shown in Section 4.4, every spacetime statement is mapped

to a synchronous combinator encoding its behavior at runtime. Syn-

chronous combinators are also used in the context of synchro-

nous reactive programming—basically Esterel without reaction to

absence—in the Java library SugarCubes [8, 50]. In this section, we

overview how these combinators are scheduled in the runtime.

Replicating. Every spacetime program presented in this paper,

as well as the experiments below, are available in the repository

https://github.com/ptal/bonsai/tree/PPDP19.

7.1 Scheduling Algorithm
The main purposes of the runtime are to dynamically schedule

concurrent processes, to retain the state of the program from an

instant to the next, and to push and pop variables onto the queue.

To achieve these goals, we extend the structures introduced in the

behavioral semantics (Section 5.1) to incorporate access counters
and a suspended completion code.

https://github.com/ptal/bonsai/tree/PPDP19
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Problem Spacetime Choco Factor

13-Queens 16.4s (62946n/s) 5.3s (194304n/s) 3.1

14-Queens 89.9s (62020n/s) 30.6s (182218n/s) 2.9

15-Queens 528.2s (60972n/s) 185.2s (173816n/s) 2.85

Golomb Ruler 10 1.8s (17407n/s) 1s (31154n/s) 1.8

Golomb Ruler 11 40.1s (14186n/s) 27.2s (20888n/s) 1.47

Golomb Ruler 12 425.8s (10871n/s) 279.8s (16541n/s) 1.52

Latin Square 60 19s (155n/s) 17.1s (172n/s) 1.10

Latin Square 75 61.2s (73n/s) 57.9s (77n/s) 1.06

Latin Square 90 150.3s (44n/s) 147.8s (45n/s) 1.02

Table 1: Comparison of spacetime and Choco on the resolu-
tion time and nodes-per-second (n/s).

Firstly, we equip every variablewith an access counter (w, rw, r ) ∈
LMin3 wherew is the numbers of write, rw of readwrite and r of
read accesses that can still happen on a variable in the current in-

stant. As suggested by the lattice LMin, these counters are decreased
whenever the corresponding access is performed. We extend the

poset Var to access counters: {⊤} ∪ (spacetime × Value × LMin3).
Secondly, given a variable x and its access counter (w, rw, r ), we

say that a process is suspended if it needs to perform a readwrite
on x when w > 0, or to read x when w > 0 or rw > 0. A process

cannot be suspended on a write access. Whenever a process is

stuck, the flow of control is given to another process. We add this

additional stuck status in the set of completion codes Compl with
the code 3.

In order to schedule processes, the runtime performs a can and

cannot analyses over the program. The can analysis computes an

upper bound on the counters: the numbers of accesses that can still

happen on each variable in the current instant. The cannot analysis
decreases counters by invalidating parts of the program that cannot

be executed.

Consider the following spacetime program (x,y ∈ LMax ):

when x |= y then f (write x, read y) else g(read x, write y) end

Initially, the counters of x and y are both set to (1, 0, 1). Therefore,

we cannot decide the entailment of x ⊨ y because its result might

change due to future writes on x or y. However, we observe that if
x ⊨ y holds then we can only write on x , which cannot change the

entailment result. Similarly ifx ⊭ y holds, we can onlywrite ony. To
unlock such a situation, the cannot analysis decreases the counters
of the variables with unreachable read/write accesses. Thanks to

the causality analysis, a deadlock situation cannot happen since

every access in every path is well-ordered.

The algorithm scheduling an instant alternates between the

execution of the process, and the decrement of access counters with

the cannot analysis.9 The mechanics of this scheduling algorithm

is close to the one of SugarCubes [8] and ReactiveML [25].

7.2 Experiments
We terminate this section with a short experimental evaluation.

The experiments were run on a 1.8GHz Intel(R) Core(TM) i7-8550U

processor running GNU/Linux. A warm-up time of about 30s was
performed on the JVM before any measure was recorded.

9
A sketch of this algorithm is available in Appendix A.3.

We select three CSPs to test the overhead of a spacetime strat-

egy in comparison to the same hard-coded Choco strategy. The

propagation engine is the one of Choco in both cases. As shown in

Table 1, the overhead factor of spacetime varies from almost 1 to

at most 3.1 depending on the problem to solve. To obtain a search
intensive algorithm, we search for all solutions of the N-Queens

problemwhich has only three constraints to propagate in each node.

This is the worst-case scenario for spacetime since the number of

nodes is directly linked to the number of reactions of a spacetime

program, and thus its overhead factor. We also consider a propa-
gation intensive algorithm by searching for a single solution of a

Latin Square problem which has a large number of constraints. To

find a solution, the search never backtracks so the number of nodes

is few. This explains the small overhead factor of spacetime which

is almost 1. Finally, we evaluate a branch and bound (BAB) search

strategy on the Golomb Ruler problem. BAB finds the best solution

of an optimization problem, and thus explores a large tree. In this

case, the overhead factor of spacetime drops to 1.5 thanks to the

more realistic balance between search and propagation.

As for the correctness, spacetime always finds the same number

of nodes, solutions and failures than Choco, as well as the same

lower bounds for optimization problems (Golomb ruler). It indicates

that the exact same search tree is explored.

8 RELATEDWORK
We review two families of search languages: constraint logic pro-

gramming and combinator-based search languages. Afterwards,

we discuss the independent issue of integrating arbitrary data into

imperative synchronous languages.

8.1 Constraint Logic Programming
Constraint logic programming (CLP) [17] is a paradigm extend-

ing logic programming with constraints. We can program search

strategies by using the backtracking capabilities of logic program-

ming. CLP systems such as GNU-Prolog [9, 12] and Eclipse [2, 39]
propose various built-in blocks to construct a customized search

strategy. Although CLP is an elegant formalism, it suffers from

three drawbacks:

(1) There is no mechanism to compose search strategies.

(2) Global state, such as a node counter, is programmed via

system dependent non-backtrackable mutable state libraries.

(3) It is bound to the evaluation strategy of Prolog, which for

example means that LDS with highest-occurrence discrep-

ancies cannot be easily implemented.
10

The tor/2 predicate [40] tackles the compositionality issue of

CLP systems. It proposes to replace the disjunctive Prolog predi-

cate ;/2 by a tor/2 predicate which, in addition to creating two

branches in the search tree, is a synchronization point. Two search

strategies defined with tor/2 can be merged with the predicate

tor_merge/2. This extension allows the user to program various

strategies independently and to assemble them. However, the search

predicates are not executed concurrently, thus two search strategies

cannot be interleaved and communicate over a shared variable. For

example, the processes Solver.search and MinimizeBAB.solve

10
See the documentation of Eclipse at http://eclipseclp.org/doc/bips/lib/fd_search/

search-6.html.

http://eclipseclp.org/doc/bips/lib/fd_search/search-6.html
http://eclipseclp.org/doc/bips/lib/fd_search/search-6.html
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must be interleaved because they communicate over the variables

consistent and domains.

8.2 Search Combinators
Early constraint search languages appeared around 1998 with Lo-
calizer [27], Salsa [21] and OPL [58, 61]. More recent approaches

include Comet [59] (successor of Localizer), the search combina-

tors [42] and its subsetMiniSearch [32]. Comet and Localizer are
specialized to local search, a non-exhaustive form of constraint

solving. Local search languages differ because their programs are

not necessarily extensive and are not always based on backtracking

search. Search combinators mostly focus on the control part of

search and it is interesting to take an example (from [42]):

id(s)
def
= ir (depth, 0,+, 1,∞, s)

ir (p, l, ⊕, i,u, s)
def
= let(n, l, restart(n ≤ u,

and([assiдn(n,n ⊕ i), limit(p ≤ n, s)])))

The combinator id is an iterative depth-first search (IDS) [19] that

restarts a strategy s by increasing the depth limit. The pattern of

iteratively restarting the search is encapsulated in a combinator ir
where the strategy s is restarted until we reach a limit n ≤ u. To
summarize, n is an internal counter initialized at l , and increased

by n ⊕ i on each restart. They show that LDS is just another case of

the combinator ir with discrepancies.

In search combinators, the search strategy is written vertically:
each strategy is encapsulated in another strategy. In spacetime, we

compose search strategy horizontally: each strategy is executed

concurrently (“next to”) another strategy. We believe that both

vertical and horizontal compositionality is required in order to

achieve high re-usability of search strategies.

A drawback of combinators-based languages is that they rely on

data from the constraint solver, and the interactions with the host

language are not formalized. In particular, it is not possible that

two search strategies safely communicate over shared variables.

8.3 Arbitrary Data in Synchronous Languages
Signals in Esterel are Boolean values, which are limited when pro-

cesses need to communicate more complex information. This is

why they bring the notions of valued signals and variables for

storing non-Boolean values [4, 53]. However, they are more re-

stricted than pure signal: testing the value of a signal is only possi-

ble when all emissions have been performed, and variables must

not be shared for writing across processes. Sequentially construc-

tive Esterel (SCEst) [49] brings variables to Esterel that can be used

across processes. The main idea is that any value must be manip-

ulated following an init-update-read cycle within an instant. This

is similar to our way to schedule write-readwrite-read, but there
is no notion of order between values in SCEst. Therefore we can

use destructive assignment similarly to sequential languages. In

spacetime, the choice of lattices as the underlying data model comes

from CCP and is more suited for constraint programming. In this

respect, lattice-based variables unify the notions of signals, valued

signals and variables of Esterel.
ReactiveML merges the imperative synchronous and functional

paradigms without negative ask [25]. An advantage is that we can

manipulate arbitrary functional data. Note that the addition of

mutable states to ReactiveML is not deterministic [23].

Default TCC [36] is TCC with negative ask. It views an instant as

a set of closure operators, one for each assumption on the result of

the ask statements. A weakness of default TCC is to speculate on the

result of the negative asks, which is implemented by backtracking

inside an instant if its guess was wrong [37]. This is also problematic

for external functions that produce side-effects.

9 CONCLUSION
Concurrent constraint programming (CCP) is a theoretical para-

digm that formalizes concurrent logic programming inspired by

constraint logic programming [56]. Unfortunately, this marriage

is incomplete since backtracking, available in constraint logic pro-

gramming, is not incorporated in CCP. We believe that the missing

piece is the notion of logical time, as it appears in the synchronous

paradigm, and it fostered the development of spacetime.

In the first part of this paper, we argued that logical time is a suit-

able device to conciliate concurrency and backtracking. The main

underlying idea is captured as follows: a search strategy explores

one node of the search tree per logical instant. In particular, we

took the example of constraint solving in which designing search

strategies is crucial to solve a CSP efficiently. We developed several

search strategies in a modular way, and showed that they can be

composed to obtain a new one. As a result, spacetime improves on

the compositionality issues faced by developers of search strategies.

In the second part of this paper, we developed the foundations

of spacetime by extending the behavioral semantics of Esterel to
lattice-based variables and backtracking. We proved that the se-

mantics is deterministic, reactive and that a spacetime program

only accumulates more and more information during and across

instants (extensiveness).

Further developments of spacetime include static compilation

such as in Esterel [29] to improve efficiency, development in a proof

assistant of the reactivity, determinism and extensiveness proofs,

and formalization of a precise connection between the operational

semantics (runtime) and the behavioral semantics. Furthermore,

a natural extension of spacetime is to reify the queue inside the

language itself instead of relying on the host language. The key

idea of this extension is to merge the time hierarchy of synchro-

nous languages [14, 24] and the space hierarchy induced by deep

guards in logic programming [18] and Oz computation spaces [43].

First-class queue will allow users to program restart-based search

strategies directly in spacetime instead of partly relying on the host

language. Preliminary extension of the compiler indicates that this

approach is feasible. Finally, although we applied spacetime to con-

straint programming, the notion of constraints is not built-in since

we rely on lattice abstractions. Therefore, we firmly believe that

spacetime is suitable to express strategies in other fields tackling

combinatorial exploration such as in satisfiability modulo theories

(SMT), model checking and rewriting systems.
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A APPENDIX
A.1 Proof of Reactivity

Lemma A.1. The semantics of spacetime is reactive.

Proof. Given a program p, we can always choose a rule to apply,
this is checked by verifying the completeness of the side conditions

on rules applying to a same program.

• Axioms nothing, pause, stop and prune are always reactive

because they do not have side conditions.

• Axioms space and space-pruned derives both pruned and

non-pruned branch. In space, enforcing instantaneousness of

the body and forbiddingwrites in single_space or single_-
time variables can be statically checked at compile-time.

• loop is reactive if the loop is not instantaneous, this can be

statically checked at compile-time.

• when-true and when-false are reactive since the entail-

ment operation only maps to true , f alse or unknown (last

both are handled in when-false). Moreover, due to the

causality analysis (property 1), the entailment result can-

not further change during the derivation.

• Given p;q, enter-seq and next-seq are complete on the

completion code of p:U ′k = 0 ∨ ¬(U ′k = 0) is a tautology.

• par
∨
is always applicable.

• Given p || q, par∧ and exit-par
∧
are complete on the

completion code of p and q. We have (U ′k , 0 ∧ U ′′k ,

0) ∨ (U ′k = 0 ∨U ′′k = 0) a tautology.

• var-decl⟲ is always applicable.

• start-var-decl→↓ and resume-var-decl→↓ are complete

(either we have a location or a variable name). For resume-

var-decl→↓, the function pop returns ⊥ if the queue is

empty, any variable not defined in a space is mapped to ⊥

as well (cf. Section 5.1), so the initialization of a world_line
variable is reactive.

• hcall depends on the semantics of the host language. The

causality analysis guarantees that the function is only called

if all its variables can be safely accessed:

– A write access is always possible.

– For read access, we ensure this variable cannot be written
anymore in the future (by property 2).

– For readwrite access, only one of such access can happen
in an instant (by property 2), and it must happen after

every write on this variable.

• react and exit-react are complete on the termination con-

dition. We have (U ′k = 1 and Q ′ is not empty) ∨ (U ′k ,
1 or Q ′ is empty) a tautology.

□

A.2 Proof of Determinism
Lemma A.2. The semantics of spacetime is deterministic.

Proof. We check that for every rule, at most one rule can be

applied to any process p, this is checked by verifying that rules on

a same statement are exclusive to each other.

• Rules nothing, pause, stop, prune, loop, var-decl⟲ and

par
∨
are deterministic because only one rule can apply.

• Axioms space and space-pruned are exclusive on the kind

of branch, so it is deterministic.

• when-true and when-false are deterministic since the side

conditions on the entailment are exclusive.

• Given p;q, enter-seq and next-seq are exclusive on the

completion code of p.
• Given p || q, par∧ and exit-par

∧
are exclusive on the

completion code of p and q.
• Due to the disjointness of the setsName and Loc , we can only
apply either start-var-decl→↓ or resume-var-decl→↓.

• hcall is deterministic if the semantics of the host language

is deterministic.

• react and exit-react are exclusive on the termination con-

dition.

□

A.3 Scheduling Algorithm
We divide the runtime algorithm into two parts: the execution of

several instants in Algorithm 1 and the execution of an instant in

Algorithm 2.
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Algorithm 1 Runtime engine

Input: A spacetime program p, a space S ∈ Space and a queue Q .
Output: The triple ⟨p, S,Q⟩ such that either p is stopped or terminated, or Q is empty.

1: procedure execute(p, S,Q)
2: k ← 1 ▷ Completion code initialized to pause.

3: if First instant then
4: Q ← push(Q, {⊥}) ▷ Bootstrap the queue with a single element.

5: end if
6: while k = 1 ∧Q is not empty do
7: ⟨Q, S↓⟩ ← pop(Q)
8: S ← can(p, S) ▷We compute an upper bound on the access counters.

9: ⟨p, S,B,k⟩ ← executeInstant(p, S)
10: Q ← push(Q,B)
11: end while
12: return (p, S,Q)
13: end procedure

Algorithm 2 Runtime execution of one instant

Input: A spacetime program p and a space S ∈ Space .
Output: The tuple ⟨p, S,B,k⟩ such that B is the set of branches and k the completion code.

1: procedure executeInstant(p, S)
2: k ← 3 ▷ Completion code initialized to stuck.

3: while k = 3 do
4: ⟨p, S,B,k⟩ ← executeProcess(p, S)
5: if k = 3 then
6: ⟨p, S⟩ ← cannot(p, S) ▷We decrease the upper bound on the access counters

7: end if
8: end while
9: return (p, S,B,k)
10: end procedure

The first algorithm implements the rules react and exit-react

of the behavioral semantics. In addition, it initializes the access

counters before each instant with the can function.

The second algorithm is the scheduler of the processes inside

an instant. It alternates between executeProcess and cannot until

the process is not suspended anymore. Consequently, this func-

tion never returns a suspended completion code. The function

executeProcess is implemented following the same mechanics than

SugarCubes [8] and some ideas from ReactiveML [25].
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